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On the Non-existence of Limiting Lines
1n Transonic Flows

By C. S. MORAWETZ and 1. I. KOLODNER

We consider flows past airfoils which are irrotationai and suteonic for low
Mach numbers at large distances from the sirfoil. If the Mach number at
infinity is gradually increased, at some particular value a small supersonic
region appears in the flow next to the airfoil. The flov appears to remain without
shocks. If the Mach number at infinity is increased still more, a definite observ-
able shock wave appears. The question arises as to why this shock wave appears.

It is possible and even quite probable, that no mixed flows without shocks
exist as transition stages and that in general as soon as the supersonic region
appears there is a shock wave which is at first 20 weak as to be unobeerved.

However, if these continuous mixed flows with varying Mach number do
exist, an explanation of why the continuous flow breaks down is needed, and
it has been suggested by various authors that a “limiting line’”’ appears in the
flow. Tollmien, Ringleb, von Kérm4n, and Tsien have observed that, if flows
and their corresponding profilee are constructed using solutions in the hodo-
graph plane which depend continuously on some Mach number, there is always
a critical Mach number where the mapping of the hodograph piane into the
physical plane oreaks down. In fact, the image in the physical plane has a fold
in the supersonic region whcse edge is known as the “limiting line.” The
Jacobian of the transformation from the hodograph plane to the physical plane
vanishes along the limiting line.

Tsien [1] and von KArmAn have proposed that continuous flow past a
fized airfoil also breaks down because of the appearance of a limiting line.
Nikolskii and Taganov [2] have shcwm that such a limiting )ine would have to
start cn the sonic curve.

It was finaily shown by Friedrichs [3] that limiting lines cannot appear
anywhere in analytic lows which depend continuously on the entrance Mach
number and that therefore the breakdown of potential flow must be due to
other causes. (Friedrichs’ proof was challenged in a controversial review by
Tsien [4].) Manwell [5] has shortened the proof considerably and eliminated
the difficult lemma supplied by Flanders in [3]. The proof presented here
dispenses with the condition of analyticity and requires only continuous second
derivatives of the stream function. In addition we sball gshow, as in (5], that
in the construction of flows past continuously changing profiles, [6,7] etc., the
incidence of a limiting line corresponds to a profile of infinite curvature.

These two results are formulated in two theorems.
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08 C. 8. MORAWETZ AND I. I. KOLODNER

Theorem 1. A limiting line cannot appear in a plane continuous flow past
an airfoil of bounded curvature if the flow depends continuously on the Mach number
al tnfintty and has a beunded supersonic region.

Theorem 2. If a set of flows which depend continuously on a parameter is
consiructed in the hodograph plane together with the corresponding set of profiles
and if, for some critical value of the parameter, a limiting line appears, then the
corresponding profile has infinite curvalure at some point.

We make the following assumptions:'

(a) A solution in the hodograph plane of the equations of an isentropic,
irrotational, plane flow is given; i.e., we have a potential function ¢(g,6) and a
stream function y(g,8) which satisfy the equations

Gy = p"w.
8))
¢ =p'q'cMg — '
in a closed simply connected region D of the ¢,6-plane. Here p is & known func-
tion of ¢ obtained from the Bernoulli theorem for steady isentropic irrotational
flow, and ¢* = dp/dp, where p = p(p) is the equation of state relating pressure
to density.
(b) ¥4 , Yoo , Vo, exist and are bounded in D.
(c) The boundary C of D intersects the sonic line ¢ = ¢ = ¢, in exactly
two points.
(d) » > O throughout D.
(e) The equation of state p = p(p) is such that d®p/dp* > 0.

A solution ¢, ¥ of equations (1) gives rise to & flow in the physical plane
provided that the Jaccbian J of the transformation

z = 2(q,0)
y = y(q,6)
does not vanish. J is given by

_ =) _ e e | L =
J (6,9 a(q.v)\a(r.y)) E’(M" g

)

1 = = =
= . (W = (¢/c" — g’ = ¢ (@ — p7'c(q — VD).
A limiting line occurs if J vanishes along a curve. This cannot happen in
the subsonic region, see [2], [3), and (8]. Thus a limiting line can occur only in
the supersonic region or on the sonic curve.
In connection with J we now prove the fundamental

1Standard notation for the flow quantities is used.
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Lemma: IfJ > OonCthenJ > 0in Dforg 2 c,.

Proof: We introduce the new dependent variables

U=¢— k#’o
3

V= ¢ + k“o
where
(4) K = p-:c-a(qa _ ca).
With this change of variables, J becomes, by (2)
(5) J = ¢qUV;

hence J = 0 if and only if U = 0 or V = 0 since by assumption (d) both U and
V are bounded in D.

From the differential equations (1) we find differential equations for U and
V. First we introduce the characteristic variables a and 8 by the equations

2@-%@—40

(6)

2d = %dq-{-do.
Then we have

9 _4998 _239

da pkdgq 30
(M

and from differentiating (3) we find, using (1),

U‘ - p-'k-'Q(¢o. - k"h - kc&‘) + ¢OO - k“n
= -P"k-'qk.\"o ’

or by (3)
(8) Us = 307"k gk (U - V).
Similarly,
() Vo= $o"%"'gk(V — U).

But, by (7), since k is a function of ¢ alone, we have

ke = pq 'kka = pq”'kky .

e o s e s e e - P, -

AR i A G Gamia
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Substituting in (8) and (0), we thus obtain the equations
Us — 3k 'kgU = =37k gk, V
(10)
Ve — 87k, V = =307k 2k, U
which may be rewritten as

(*'U%, = —BUV

(11)
(k'V%5e = =BUV
where, by (4), (10),
2

B = 5 kgk, = § ok 2 (L)
;p"k" {—;@' (%; = l) + ’giqi - 'g‘- Gz, p.}.

pe pc'dp

Thus B > 0 for ¢ > ¢, > ¢ since p, < 0 by Berncu!li's theorem and dc*/dp =
d’p/dp* > 0 by aasumptxon (e).

Let us suppoee first that J vanishes or is negative somewhere in the super-
sonic region ¢ > ¢, > c of D. Since J is continuous and D is closed, there is
a maximum value of ¢ > ¢, for which J = 0. Hence by (6) and (4), there is a
maximum value r = a* 4+ 8* of a + B ior which J = 0, and, fora + 8 > r,

Fiaure 1

J > 0,¢grncct > 3onC. By (5), cither U = Qor V = 0fora = a*, § = §*,
Suppose U = 0 at this point. Then A™'U? = 0 al {(«*A*) but ¥™'U” > 0 for
a+ 8> Hence,fora = a* 8 > B% k7'U’ > 0 and therefore, by the
mean value theorem, (k™ U’), > 0 for a = a* and some value B of 8 where
8 > 8*. But then by (11) since B > 0 we have UV < 0 at (a*, 8), that is, by
(5), J < 0at (a*B). Since a* + 8 > r this contradicts J > Ofor a4+ 8>

and hence U cannot vanish for ¢ > ¢,. Similarly V cannot vanish, and thus J
cannot vanish for ¢ > ¢, > c. :

— ——— e

:
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Next ¢ipposc tie* , = 0 at a point P where ¢(P) = c,, and let a{P),
B(P) be th: coordinates u; thws point in the characteristic coordinate system.
By (11), sire ." > 0 an; hence UV > 0 for ¢ > ¢,, k™'U? is decreasing in the
directicn of rnereasing £ ulong the linc a = a(P). Since k"'U* is positive and
continuous fcr ¢ > ¢,, »'U® must be bounded away from zero for ¢ 2> c,.
Hence | k™"*U i is bouncied away from zero on a = a(P), 8 > B(P).

In terms of y, we “nd from (3) that

(13) k-l.'tw. = g(k-‘ntj + k‘n‘/o)

and hence, siuce ¥, is bounded and k — 0 for « = a{P), 8 — #{P) frora sbove,
| k', | is alse bounded away trom gzero for a@ = a(P), # > B(P), 8 sufficiently
clcse to B(P). Therefore, using (4) expanded about ¢ = ¢ = ¢,, we have
(14) (—:_i'—m
q —Cq |

for @ = a(P), 8 2 B(P), 8 sufficiently close to 8(P).

Now, since J vanishes at P, we have, by (¢), ¢,(P) = 0. By Taylor’s
theorem, since the second derivatives of ¢ exist and are bounded,
(15 Ve = (qg — c)F, + (6 — 8(P))F,

where F, and F, are bounded functions of ¢ and 6. Along the characteristic
a = a(P), we have, by (6)

>35>0

(16) 0-6P) = [ VIR~ 14" dg = m(ag - c,)
where m is bounded. Hence, for a = a(P), 8 2> B8(P)
(7 Vo = (F\ + mF)(q — c.)

holds and therefore l q—é’—c: is bounded. But then

¥
@—=c)”" | 0 for

a = a(P), 8 — B(P) and this contradicts (14). Thus J > 0 for ¢ = ¢, as well
as for ¢ > ¢, and the lemma is proved.

It remains only tc apply the above lemma to ihe two situations: flow past
a fixed airfoil and the construrtion of airfoils. We treat both these situations
at once, and note first that the boundarv of the domain of the flow in the hodo-
graph plane is the streamline corresponding to the profile; since the sonic line

intersects the profile twice, we need only show that J > 0 on the profile to prove
that J > 0 for ¢ > c,.

The curvature K of any streamline is given by the formnula
K = d6/ds = 6, cos 6 + 6, sin 6.
But the transformation z = z(q,6), y = y(q,0) gives, if J does not vanish,
Jé, =y,
Jé, = —z,

e i i = e b
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and hence
KJg = y,gcos § — z,gsin 6

] .
Lo (y.\". + I,\'/.) bt “l «'I .
P P
Using (2} we then find

(18) K'J'g' = ;" V> qJ

on the profile, for ¢ > ¢, > e.

Consider a set, M, of Mach numbere at infinity and a set of profiles, which
depend continuously on M, and have finite ~urvature. Let K. be the upper
bound for the curvatures, and suppose that J > 0 on each prefile for M < M*;
J = 0 for M = M?* at acme point on the supersonic section of the ccrrespond-
ing profile. Then, by (18)

J>1/Klg for M < M¢,
where g is the limit speed. Therefore, since J is a continuous function of M,
J21/Kq>0 for M =M*

i.e., J cannot vanish on the boundary streamline. This fact is derived by
Friedrichs in (3).

The lemma mey now be applied to show that J > 0 throughout the super-
sonic region and on the sonic line. We conclude therefore that a limiting line
cannot. sppear in the flow about & fixed airfoil with a bounded supersonic region
adjacent to it, and if it appears in the construction of profiles with adjacent super-
sonic regions then the curvature of the corresponding profile is infinite at some
point.
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